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We explore the long-standing discrepancy between an experimentally observed sudden onset of the
excluded-volume effect in stiff chains �Murakami et al., Macromolecules 13, 345 �1980�� and much more
gradual onset seen by Monte Carlo simulations of the persistent self-avoiding walk model. We find by using
various simulations and real-space renormalization methods that, while models incorporating parallel-bond
inhibition enhance the excluded-volume effect, they have little effect on the abruptness of its onset. We also
observe that relaxational simulations, which include reptationlike motion can, however, lead to a sudden onset
much like in the experimental observation.
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I. INTRODUCTION

Some years ago, Murakami et al. �1� reported the result of
light scattering and other measurements of an extremely stiff
linear polymer, poly-hexyl-isocyanate �PHIC� with narrow
molecular weight dispersion in hexane solvent at room tem-
perature. They analyzed the dependence of the radius of gy-
ration on the molecular weight and reported a rather sudden
departure from the standard Kratky-Porod wormlike chain
model �2� as shown in Fig. 1. To complicate the matter fur-
ther, viscosity measurements did not show a corresponding
abruptness as the molecular weight increased. However, we
have not been able to find any other similar experiments in
the literature and thus these results appear to be uncorrobo-
rated by other experiments so far. Moon and Nakanishi �3�
subsequently performed simulations of a stiff self-avoiding
walk model called the persistent self-avoiding walk �PSAW�
on three-dimensional lattices and showed that the stiffness
alone cannot explain the sudden increase in the radius of
gyration as observed by Murakami et al. Their analysis of
Murakami et al.’s radius of gyration data suggested that the
stiff polymer behaved as if there were no excluded-volume
effects up to a certain molecular weight �or length� and then,
beyond this point, the excluded-volume effect sets in
abruptly, making the chain behave almost like a flexible self-
avoiding walk. The discrepancy between the PSAW model
and experimental results certainly calls for new work on both
theoretical and experimental fronts.

In this work, we explore this discrepancy theoretically
and numerically by crudely modeling some of the obvious
differences between the stiff PHIC and the PSAW. PHIC has
large pendant side chains, which are individually almost flat.
Large side groups clearly increase excluded volume and,
while it can enhance the stiffness of the chain, it could also
compete with it. Such competition would occur, e.g., if the
side groups from different parts of the chain interfere in a
trans configuration �straight path� and thus prefer a gauche
configuration �a turn� instead. Of course, it is unclear
whether such competition is beyond the simple effects of
larger excluded volume overall. Nonetheless, an inclusion of
effects that directly compete with the stiffness appears in-
triguing. The model we consider first �model 1� is a lattice
self-avoiding walk with the monomer length equal to a lat-

tice constant and the side chain length equal to half a lattice
constant. We then assign a short-range repulsive interaction
�1�0 and an on-site repulsive interaction �2�0 to the side
chains. A square-lattice version is illustrated in Fig. 2. The
repulsion �1 induces stiffness while the soft-core on-site re-
pulsion �2 may favor a gauche turn as in the example shown.
In this way, the model contains some competition between
stiffness and excluded-volume of the side chains.

On the square lattice, model 1 is almost equivalent to
simply giving energy �1 for each gauche step of the back-
bone and �2 for each nearest-neighbor, parallel bond pair.
Though the model illustrated in Fig. 2 has a more direct
physical interpretation, we will use the latter model �denoted
by model 2� in what follows for simplicity. We extend this
latter model to three dimensions by simply assigning �1 to
each gauche turn and �2 to each neighboring pair of parallel
bonds �without explicitly invoking side chains�. So the ca-
nonical model we start with is given by the effective Hamil-
tonian for a self-avoiding chain of the form

H = NG�1 + NPB�2 �model 2� , �1�

where NG is the number of turns and NPB is the number of
neighboring parallel bond pairs. Moreover, in much of this

FIG. 1. The PHIC radius of gyration results of Murakami et al.
�1� �pluses� are compared with the Gaussian, stiff chain prediction
�dashed line�, PSAW Monte Carlo results of Moon and Nakanishi
�3� �dots�, and �almost� flexible SAW results �crosses�. N is the
number of steps �monomers� and p is the gauche probability. This is
a scaling plot in that the abscissa is the number of persistence length
segments �Np� and the ordinate is the scaled squared radius of
gyration appropriate in the stiff regime �N→�, p→0�.
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work, we present results from setting �2 to be large, i.e.,
essentially forbidding neighboring parallel bonds as the lim-
iting case of �relatively� large competition against the stiff-
ness.

II. MODIFIED PSAW MODEL

In the PSAW model of a stiff chain, each step of a chain
is randomly and independently generated with a given
gauche probability, where any attempt at self-intersection re-
sults in the rejection of the walk from the ensemble. The
gauche probability p corresponds to the energy �1 by

p =
z − 2

z − 2 + exp�Ec�
, �2�

where Ec��1 /kBT and the lattice coordination number z=6
for the simple cubic lattice. This correspondence ensures the
correct relative statistical weights of trans and gauche steps if
there is no other competing interaction, or �2=0. It is also
true if �2→�, or all walks with nearest-neighbor parallel
bond pairs are rejected from the ensemble. However, this is
no longer true if �2 is finite. As it is difficult to take a finite
�2�0 into account in such a random walk model, we con-
sider a modified PSAW simulation for the limit of �2→�
�which we label as model 3�. This can be incorporated into a
modified PSAW by generating random realizations of a
PSAW of the gauche probability equal to Eq. �2� and reject-
ing them whenever prohibited nearest-neighbor, parallel
bond pairs appear in the chain.

Shown in Fig. 3 is the radius of gyration �Rg
2� for the

modified PSAW �with the parallel-bond inhibition�, standard
PSAW, and the Gaussian stiff chain result �wormlike chain�
�we call the last model persistent random walk or PRW� in
terms of the wormlike-chain scaling variables. The two
PSAW results are from a fixed stiffness of p=0.1 and only
the number of steps N has been varied. �The corresponding
data from p=0.05 are almost identical.� Clearly, the behavior
of the modified PSAW is quite similar to that of the standard
PSAW. While it shows a larger deviation from the PRW re-
sult �thus larger excluded volume in general�, there is evi-
dently no indication of sharpening in the onset of the ex-
cluded volume effect. Analogous results for smaller p are

also consistent: there is no change in the way excluded vol-
ume effects set in. In fact, smaller p shifts the onset of the
flexible SAW behavior even further toward larger N and thus
all curves appear even closer to each other.

These PSAW simulation results were obtained from at
least 10 000 realizations �with and without enrichment tech-
niques�, and the standard error of the mean was smaller than
the symbols used in the figures. Further, the realizations were
divided into several batches and their means and fluctuations
are compared and found to be quite comparable to each
other. Also, this type of simulation, where PSAWs are grown
from a seed until self-intersection is attempted and upon such
an attempt a whole new PSAW is started, is more likely to be
able to sample rare but important configurations than some
other types of simulations �cf. Sec. IV�. Thus the present
PSAW results appear to be close to equilibrium. Therefore,
we interpret these results as suggesting that, at least in equi-
librium, the parallel-bond inhibition of model 3 only in-
creases the overall excluded-volume effect but does not lead
to a sudden onset of such effects.

III. REAL-SPACE RENORMALIZATION

In an attempt to corroborate the simulations of model 3,
we extended the real-space renormalization methods of Lee
and Nakanishi �4� who applied the technique to the standard
PSAW model in two and three dimensions. They obtained
results that are consistent with successive crossovers from a
stiff rod to Gaussian stiff chain and finally to an excluded-
volume stiff chain regime in three dimensions but the corre-
sponding results in two dimensions showed a direct cross-
over from a stiff rod to the excluded volume stiff chain
regime. This was consistent with both the theoretical expec-
tations �5� and the PSAW Monte Carlo results referred to
earlier. However, it did not address the crossover abruptness
nor other possible effects competing with stiffness. While it
is possible to include cases corresponding to finite �2 of
model 2 by assigning a fugacity for the occurrences of neigh-
boring parallel-bond pairs and including this fugacity in
renormalization, we opted to address only the �2→� limit or
the model 3 in this work. We also did not include a parameter

FIG. 2. A sketch of the model 1 of a stiff chain with repulsive
side groups. The side chains have both a short-ranged repulsion and
an on-site repulsion. If two successive gauche turns happen to oc-
cur, the next step along the chain may either satisfy �1 and go trans
or satisfy �2 and go gauche.

FIG. 3. The scaled, square radius of gyration from the modified
PSAW model with nearest-neighbor parallel bonds prohibited ��
and �� compared with those of the original PSAW model �squares
and �� and the Gaussian stiff chain �or PRW� result �solid line�.
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that would control the degree of excluded volume, or in other
words, the chains were always constrained to be fully self-
avoiding. Thus we keep the simple, two-parameter frame-
work and only aim to look for the possible effect of prohib-
iting neighboring parallel bonds on the manner of stiff-to-
flexible crossover.

To include the parallel-bond inhibition of model 3, we
simply exclude those configurations that contain any pairs of
neighboring parallel bonds within the sums that contribute to
renormalized trans and gauche bond fugacities. Thus, after
Lee and Nakanishi �4�, we denote the trans bond fugacity by
K and the gauche bond fugacity by G, and write the recur-
sion relations for them as

K� = �
trans

KNTGNG, �3�

G� = �
gauche

KNTGNG, �4�

where �trans denotes the sum over all configurations of
PSAW’s that enter from a corner of a cell and exit it in the
same direction while �gauche denotes those that exit in a dif-
ferent direction. NT and NG refer to the number of trans and
gauche bonds, respectively, for each configuration in the
sum, and in our application, the sums exclude the configura-
tions with neighboring parallel bonds. Figure 4 shows this
for a 2�2 cell on the square lattice for illustration purposes
only �as our interest is in three dimensions�.

For 2�2�2 cells on the simple cubic lattice, these equa-
tions are

K� = 2G4 + 4G5 + 2G6 + K�4G2 + 4G3� + K2, �5�

G� = 2G3 + 3G4 + 2G5 + G6 + K�G + G2 + 2G3 + 2G4 + G5�

+ K2�G + G2� . �6�

For 3�3�3 and larger cells, the recursion relations are too
lengthy to quote here. �For example, for 3�3�3, there are
up to 10 trans and 20 gauche bonds that appear in the recur-

sion relations with coefficients of some of the terms of
greater than 700, and for 4�4�4, there are up to 23 trans
and 50 gauche bonds where the maximum coefficients have
values greater than 490 million.�

Shown in Fig. 5 is the resulting renormalization flow dia-
gram from the 4�4�4 cell calculation. It turns out that the
general features of this diagram are rather similar to the cor-
responding flow diagrams of the PSAW renormalization
without parallel-bond inhibition. They both show a critical
fixed point on the symmetry axis K=G �i.e., a flexible chain�
that is stable to stiffness �i.e., in the direction perpendicular
to K=G�, and there is no apparent qualitative difference be-
tween this picture and that of the ordinary PSAW �though we
performed the latter only up to 3�3�3�. The only differ-
ences are quantitative, and here we compare for only the
3�3�3 results since we have done both problems only
up to this size: The fixed-point value of K*=0.3067
�for 3�3�3� is about 11% larger than that of the usual
PSAW and the relevant eigenvalue �1=5.66 �in the K=G
direction� is about 14% smaller while the irrelevant eigen-
value �2=0.188 �in the stiffness direction� is about 29%
larger than the respective, corresponding values for the usual
PSAW renormalization of the same cell size.

Since K* is an estimate of the 1/�, where � is the effec-
tive coordination number, the larger value of K* implies that
on average a smaller number of turning configurations are
available, which is consistent with a larger excluded-volume
effect. The smaller �1 could imply a larger estimate of the
Flory exponent �, but such an estimate from a single, small
cell calculation is not significant in itself; we would need to
study the trends as the cell sizes are varied. The ratio
	�	ln �2 / ln �1	 is the correction-to-scaling exponent that
measures the relative strength of the deviation from
asymptotic power law �R2�
N� �the smaller 	, the larger the
correction�. Here 	=0.964 compared with the corresponding
value of 1.02 for the usual PSAW, suggesting only a minor
increase in the importance of the correction.

FIG. 4. �a� 2�2 renormalization cell into whose corner a PSAW
enters from below; �b� the PSAW configurations that renormalize to
a trans superstep. Neighboring parallel bonds occur in the dashed
configuration and are excluded from K�=2KG2+K2. �c� Those that
renormalize to a gauche superstep. The dashed configuration con-
tains a neighboring parallel-bond pair and is excluded from
G�=G3+KG+K2G.

FIG. 5. Renormalization flows generated by the recursion rela-
tions for the 4�4�4 PSAW with parallel-bond inhibition. The
arrows indicate the local direction of the flows from �K ,G� to
�K� ,G��. Also shown is the symmetry axis K=G and the critical
fixed point on it at K*=G*=0.2952 �a small circle�.
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Thus, the real-space renormalization we performed does
not appear to indicate a significant effect of this particular
kind of competition to stiffness �inhibition of parallel bonds�
that was included. �However, there may be significant effects
in two dimensions �6�.� These results are entirely consistent
with simply an increased excluded-volume effect, and thus
also consistent with the equilibrium Monte Carlo simulation
of the previous section.

IV. RELAXATIONAL SIMULATION

So far, all the indications are that, in equilibrium, prohib-
iting nearest-neighbor parallel bonds does not affect the man-
ner of onset of the excluded-volume effect in the PSAW
model. In an effort to explore this issue further, we now
return to model 2 �Eq. �1�� and investigate it by using a
relaxational Monte Carlo simulation. In this approach, we
can vary the value of �2 as well as track the relaxation of the
chain conformation as a function of the Monte Carlo steps.
Although the dynamics introduced by our choice of the re-
laxational pathways may not necessarily accurately reflect
the dynamics of a stiff polymer in solution, it at least pro-
vides some insight into possible nonequilibrium effects �as
we shall see below�.

First, we must generate initial configurations of the stiff,
self-avoiding chains. We do this by using the original �sto-
chastic� PSAW model with a small gauche probability p,
typically obtained by using Eq. �2� for the given �1 �but with
no regard to �2�. Next, we must define the elementary steps
allowed in the relaxation. As usual in lattice polymer simu-
lations, we first include the local motion of the either end
point into an unoccupied lattice site �e.g., end1 in Fig. 6 can
move to sites labeled m1 or m3�. Then, corners could flip if
this action does not result in self-intersection, as in the figure
where the corner 1 can flip to m1, or corner 2 can flip to m2,
etc. With these two types of local moves allowed, there are
six possible moves available to the chain shown in the figure.

It is well known that, for flexible chains ��1=�2=0�, the
above two kinds of moves are sufficient to quickly equili-
brate the chain conformation. However, for stiff chains �large

�1�0, with or without �2�, the relaxation process is ex-
tremely slow and freezes quickly because of the high barrier
of introducing gauche turns. To work around this problem,
we additionally allow a new type of move called slide. There
are two possible kinds of slide moves; an end point can slide
outward, away from the current position of the chain, either
creating a trans step in its immediate wake or a gauche step.
The rest of the monomers will follow the end point and slide
accordingly like a snake. With these types of basic moves
allowed, the usual Metropolis algorithm is applied and the
relaxation process is continued for a predefined number of
time steps �defined here as the number of attempted moves�.

The advantage of the slide move is obvious as it can cir-
cumvent barriers and easily remove existing gauche steps. If,
e.g., the chain of Fig. 3 slides one step to its left, the number
of corners in the chain is reduced from five to four, thereby
reducing the total corner energy, arriving at an energetically
favorable configuration. It is also possible to get a larger
number of corners as well, though less likely to be accepted
according to the Metropolis algorithm. However, as with any
set of basic allowed moves, this scheme introduces a particu-
lar dynamics, and since it is impossible to make sure to reach
statistical equilibrium, our results may reflect the specific
dynamics introduced by the slide moves. Of course, this may
be a blessing in disguise since sliding as we introduce is
similar to reptation, a kind of dynamics that is believed to be
important in real polymer solutions, at least in high concen-
trations. The extreme stiffness in our problem artificially cre-
ates a situation that is somewhat analogous to a concentrated
solution, where relaxation to equilibrium is difficult only
through localized moves.

The results of these simulations are illustrated in Fig. 7,
where the same scaling variables as in Figs. 1 and 3 are also
used and the data from �2=0 and �2�0 are compared with
each other and with the Gaussian PRW results �dashed line�.

FIG. 6. Illustration of allowed local moves in the relaxational
Monte Carlo simulation. The end labeled end1 can move to either
site m1 or m3, while the end, end2 can only move to m4. The
corners 1, 2, and 5 can move to m1, m2, and m5, respectively.

FIG. 7. Some of the results from the reptation relaxational
Monte Carlo �symbols� are shown together with the Gaussian PRW
results �dashed line�. The different symbols correspond to different
stiffness �corresponding to the range of stiffness between
p�0.026 and 0.18�. Each data point corresponds to the �time� av-
erage from at least a few million attempted moves, with those for
larger values of Np averaged over 13 million moves or more. The
last few points were an average of several independent chains �typi-
cally four�, while most other points are the averages of many more
independent chains.
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Most of these data were obtained at �1=3.5, roughly corre-
sponding to a fixed stiffness of p=0.1 and for a different
number of steps N, but some were for different levels of
stiffness. Those plotted with �, �, and � are all for �2=0
�no parallel-bond inhibition�, where the stiffness values are
�1=5 �p�0.026�, �1=3.5 �p�0.1�, and �1=2.9 �p�0.18�,
respectively. Those plotted with �, �, �, and � are all with
�2=20, i.e., with parallel-bond configurations essentially for-
bidden, where the stiffness values are �1=3.5 �or p�0.1�,
and �1=3.2 �p�0.14�, �1=3.27 �p�0.13�, and �1=2.9
�p�0.18�, respectively.

The most striking features are that the last few points for
the parallel-bond inhibited case do indeed significantly devi-
ate from the wormlike chain �or Gaussian stiff chain� results
while all prior points are almost identical to the Gaussian
chain result. Both of these features are rather reminiscent of
the PHIC experiment of Murakami et al. in contrast to the
PSAW Monte Carlo simulation results with or without
parallel-bond inhibition.

Of course, we must take these results with caution. If we
regard the PSAW Monte Carlo results as describing equilib-
rium, as we in fact do, the current reptation Monte Carlo
results cannot correspond to equilibrium. Presented in Fig. 8
are the time dependence for four typical, independent repta-
tion runs of the square radius of gyration of a single chain.
They correspond to the stiffness of p�0.1 and with the
parallel-bond configurations essentially prohibited. As can be
seen, three of these chains appear to settle into an apparent
equilibrium limit at �R2��2000, but one chain has a much
wider fluctuation between about 2000 and 7000. Each data
point in the figure represents an average over N=900 �also
the length of the chain� attempted moves, and yet evidently
we have not reached a true equilibrium. For reference, a
chain that is reptating in a highly concentrated solution or a

dense network is thought to require a time that scales as
O�N3� to completely forget its previous conformation �7�.
For N=900, this so-called tube renewal time alone may
amount to more than 700 million steps. Clearly, the current
problem of a long, stiff chain is a different problem but it
does share some features such as the severe constriction of
where the chain can move to. Thus, one possible explanation
of the features of Fig. 7 is that the stiff chains �with or
without the parallel-bond inhibition� are mostly stuck in a
metastable state that is close to the wormlike-chain result,
and only some of the parallel-bond inhibited chains make it
out of such a state at sufficiently large Np ��100�. That is,
while the whole range of the results shown in Fig. 7 are
nonequilibrium, they may still suggest that the parallel-bond
inhibition, in competition with stiffness, does help with the
convergence toward a true equilibrium, resulting in the
prominent rise in �R2� only for that case for sufficiently long
chains. Again, these are speculations, as we do not have re-
sources to run the simulations longer or on more chains to
definitively conclude, but all the appearance is that the fea-
tures referred to above are characteristics associated with dy-
namically induced metastable behavior, and moreover, com-
petition with stiffness may help to differentiate the
dynamical behavior compared to the case only with stiffness.

V. SUMMARY

In this work, we attempted to unravel the differences be-
tween the one experimental result �1� available for the con-
formational statistics of very stiff, single polymer chains and
those of PSAW lattice simulations �3�. We focused on a par-
ticular type of competition to stiffness �parallel-bond inhibi-
tion� and used modified PSAW simulation, real-space renor-
malization, and relaxational, reptation simulation on such a
model. The results suggest that such a competition will, in
true equilibrium, only lead to an increased excluded-volume
effect, but with reptationlike dynamics, the true equilibrium
is difficult to obtain and the parallel-bond inhibition could
greatly help the chains to get out of the trapped, metastable
state if the chain is long enough. Our speculation is that the
experimental result �1� may in fact reflect metastable states
somewhat like those we observed in the dynamical simula-
tions. With the current findings, further experiments on stiff
chain polymers are called for. Such work would shed much
light on future avenues of exploration.
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